<center id="xlz40"><optgroup id="xlz40"><center id="xlz40"></center></optgroup></center>
    <span id="xlz40"><table id="xlz40"></table></span>
    <label id="xlz40"><xmp id="xlz40">

    <center id="xlz40"><tr id="xlz40"></tr></center>

  1. 您的位置首頁  性愛保健  男性保健

    玩躲貓貓游戲 AI學會攻防術

    • 來源:互聯網
    • |
    • 2019-09-19
    • |
    • 0 條評論
    • |
    • |
    • T小字 T大字

      盡管機器學習在諸如圍棋和Dota 2等復雜游戲中取得了顯著進步,但在這些領域掌握的技能并不一定能推廣到真實場景中實際應用。越來越多的研究人員正在尋求建立一種機器智能,使其行為、學習和進化更像人類。

      總部位于舊金山的OpenAI公司近日發表的一篇新論文提出,在兒童的“躲貓貓”游戲中訓練模型,并在數以千萬計的競賽中使它們相互對抗,可導致模型自動發展出類似人類的行為,從而提高智力并改善后續行動的性能。

      為什么選擇躲貓貓?

      該論文的第一作者、OpenAI研究員博文·貝克認為,躲貓貓被選為一個有趣的起點,主要是因為其規則很簡單。所有游戲中的代理(Agent,也稱智能體,指能自主活動的軟件或硬件實體)都被模擬為球形對象,可執行3種類型的操作:導航、抓住并移動物體、鎖定對象,且只能由該代理的隊友解鎖。

      研究人員在模擬的、物理接地的環境中放置了1—3個“躲藏者”和1—3個“尋找者”,房間的邊界是靜態墻。環境中還包括不同尺寸的可移動箱子和可移動坡道。

      研究人員使用強化學習來訓練游戲代理,并遵循簡單的躲貓貓規則:隱藏者成功躲過尋找者的追逐,或是尋找者成功找到躲藏者。

      AI如何玩躲貓貓?

      在經過數億次的游戲后,AI代理經歷了幾個階段的策略發展過程。

      在初始階段,躲藏者(藍色)和尋找者(紅色)通過在空間中移動而不操縱任何物體,制定了非常粗糙的躲避和追逐策略。

      在經歷2500萬個回合后,游戲變得更加復雜。躲藏者學會了移動和鎖定在環境中的箱子和路障,以在自己周圍建立堡壘,這樣尋找者就永遠看不到它們了。不僅如此,他們還制定了協調戰略,例如相互傳遞物體,以加快建造堡壘的進程。

      然而,在游戲進行了7500萬回合之后,尋找者發現了一個反策略。他們學會了在躲藏者的要塞旁邊移動一個坡道,并用它來爬過墻壁。

      作為回應,躲藏者學會了將坡道移入他們的房間,因此尋找者無法用它來越過墻壁。

      隨著環境變得越來越復雜,躲藏者學會了使用細長箱子建造更強大的“堡壘”。雖然OpenAI認為這將是最終的策略,但在游戲進行到3.8億回合時,尋找者再次成功反擊,找出一種方法來跳到一個盒子上并利用動力在它上面“沖浪”,越過墻壁進入堡壘。

      在最后階段,躲藏者學會在建造堡壘之前鎖定所有箱子,以防止“箱子沖浪”。

      研究人員將這些不同策略的演變稱為“來自多智能體自動課程的緊急技能進展”。“自動課程”這一術語是今年由DeepMind創造的,適用于多個代理逐漸創造新任務以在特定環境中相互挑戰。OpenAI的研究人員認為,這個過程在自然選擇方面具有相似之處。

      這項研究為啥很重要?

      鑒于躲貓貓相對簡單的目標,通過競爭性自我游戲訓練的多個代理學會了使用工具,并采用人類相關技能來獲勝。OpenAI認為,這為未來的智能代理開發和部署提供了一個有前景的研究方向。OpenAI正在開源其代碼和環境,以鼓勵在該領域進一步研究。

      OpenAI的最終目標是構建能夠在一個通用系統中執行多項任務的人工通用智能(AGI)。雖然可能會有不同的目標,但OpenAI正在大力投資由大規模計算能力實現的強化學習研究。OpenAI最近與微軟簽署了一份價值10億美元的為期10年的計算合同。

      躲貓貓游戲研究也激發了OpenAI,因為隨著環境復雜性的增加,游戲中的代理不斷地通過新策略自我適應新的挑戰。貝克表示:“如果擴展像這樣的流程,并將其放入更復雜的環境中,那么你可能會得到足夠復雜的代理,以便為我們解決實際任務。”

      挑戰在哪里?

      游戲代理有時會表現出令人驚訝的行為。例如,躲藏者試圖完全逃離游戲區域,直到研究人員對此施加懲罰。

      其他挑戰可能歸因于模擬環境設計中的物理缺陷。例如,躲藏者了解到,如果他們在拐角處向墻壁推動斜坡,斜坡將由于某種原因穿過墻壁然后消失。這種“作弊”說明了算法的安全性如何在機器學習中發揮關鍵作用。研究人員說:“在它發生之前,你永遠不會知道。這類系統總是存在缺陷。我們所做的基本上是觀察,以便我們可以看到這種奇怪的事情發生,然后試著修復物理缺陷。”(馮衛東)

    免責聲明:本站所有信息均搜集自互聯網,并不代表本站觀點,本站不對其真實合法性負責。如有信息侵犯了您的權益,請告知,本站將立刻處理。聯系QQ:1640731186
    友薦云推薦
    主站蜘蛛池模板: 婷婷久久久五月综合色| 色婷婷综合久久久久中文一区二区| 亚洲综合亚洲国产尤物| 天天干天天色综合| 色综合久久中文字幕| 六月丁香激情综合成人| 色综合久久无码中文字幕| 婷婷久久香蕉五月综合| 亚洲国产综合专区电影在线| 亚洲综合区图片小说区| 久久精品国产亚洲综合色| 亚洲国产欧美国产综合一区| 综合在线视频精品专区| 俺来也俺去啦久久综合网| 国产成人综合亚洲绿色| 天天综合天天添夜夜添狠狠添| 亚洲AV人无码综合在线观看| 五月婷婷久久综合| 久久久久一级精品亚洲国产成人综合AV区 | 色爱区综合激情五月综合色| 精品亚洲综合久久中文字幕| 国产亚洲综合一区二区三区| 色欲色香天天天综合网WWW| 亚洲综合成人网在线观看| 九九久久99综合一区二区| 狠狠亚洲婷婷综合色香五月排名| 丁香五月网久久综合| 一本久道久久综合多人| 亚洲欧洲国产成人综合在线观看| 一本色道久久88亚洲综合| 国产亚洲欧洲Aⅴ综合一区| 激情综合色五月丁香六月亚洲| 亚洲综合无码精品一区二区三区| 一本一道久久a久久精品综合 | 中文字幕久久综合| 97久久国产综合精品女不卡 | 伊人婷婷综合缴情亚洲五月| 久久天天躁狠狠躁夜夜躁综合 | 亚洲狠狠爱综合影院婷婷| 久久本道综合久久伊人| 丁香色欲久久久久久综合网|